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Introduction 

The Role of EGF Receptor Negative Regulatory Components in Breast Cell Growth 

Amplification of the epidermal growth factor receptor (EGF-R) is correlated with a poor 

prognosis for breast cancer patients (1). In addition, several different areas of research further 

support the idea that EGF-R expression levels are important in the development of breast cancer (2- 

7). These studies include in vivo, in vitro and transgenic animal studies (2-7). 

The EGF-R is a transmembrane tyrosine kinase (8). Following binding to one of its 

ligands, the EGF-R is rapidly phosphorylated on C-terminal tyrosine residues. Phosphorylation 

allows the receptor to initiate signaling cascade via numerous interactions with other protein 

molecules (8-10). 

The EGF-R is negatively regulated both spatially and covalently (8, 11-15). After binding 

ligand, the EGF-R is rapidly internalized via coated pit mediated endocytosis. The internalized 

receptors are then sorted through the endocytic apparatus and either recycled back to the cell 

surface or degraded in lysosomes. Lysosomal degradation leads to a decrease in the overall EGF-R 

receptor mass following ligand stimulation and is referred to as receptor down-regulation (11-15). 

Alternatively, phosphorylation of the EGF-R on serine or threonine residues leads to receptor 

desensitization (8). Desensitized receptors have a decreased affinity for ligand and reduced tyrosine 

kinase activity. Both receptor down-regulation and desensitization control the extent and duration 

of EGF-R signaling in response to ligand stimulation (8). 

The MDA-MB-468 malignant breast cell line and its "S" variant lines generated by Filmus 

et al have been used to correlate EGF-R levels and tumorigenicity (4 and 5). The MDA-MB-468 

cell line expresses 1.9xl06 EGF-R per cell due to genomic amplification and is growth inhibited by 

exogenous EGF (4 and 16). Filmus et al selected the "S" variant cell lines from the parental MDA- 

MB-468 cell line by growth in EGF containing media. All of the variants had lost the parental cell 

line EGF-R genomic amplification . The SI variant expresses 1.6 x 104 EGF-R per cell and the 

Sll variant expresses 6.6 x 104 receptors per cell. The parental cell line has a faster growth rate 

than either variant and forms larger more aggressive tumors when injected into nude (4 and 5). 
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These results suggested that the loss of EGF-R amplification may have directly led to the decreased 

tumorigenicity seen with the variants. 

These observations led us to hypothesize that amplification of the EGF-R in the absence of 

concomitant increases in its negative regulatory components would lead to dysregulated kinase 

activity and uncontrolled receptor signaling. Because EGF-R kinase activity determines both its 

mitogenic and transforming ability, dysregulation would lead to uncontrolled growth and 

contribute to the formation of cancers (9). This hypothesis is currently being tested. 

Statement of Work 

Part I. 

Determine the percent reduction of EGF-R kinase activity following PMA or EGF induced 

desensitization for all cell types being 

Months 1-12 

Part II. A 

Transfect all cell types with mutant receptors and characterize the total receptor number for 

each transfectant. 

Months 13-24 
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Body of Report 

Several conclusions were made in the end of year report for this project submitted last year. 

Phosphotyrosine was measured as the most proximal readout for EGF-R activation. It was found 

that the addition of EGF led to an expected increase in phosphotyrosine (PY) for SI, SI 1 and 468. 

Unexpectedly the PY level never deceased in the 468 cell line but was rapidly decreased in the S1 

or Sll variant cell lines. This result suggested that indeed, the negative regulatory apparatus was 

unable to regulate the amplified receptor number. The rate at which the EGF-R was down- 

regulated in these experiments correlated closely with the rate of PY decrease. This suggested that 

downregulation was one of the most important if not the most important negative regulatory 

pathway for attenuating activated EGF-R in these cells. However, the PY/EGFR ELISA results 

showed that in the SI and Sll cell lines, PY was removed at a rate faster than EGF-R degradation 

occurred. For this reason, the effect of protein kinase C (PKC) and tyrosine phosphatases were 

also examined. Tyrosine phosphatases, but not PKC, appeared to be critical EGF-R negative 

regulatory components. The HMEC cell line Al has an EGF-R per cell number (2 x 105) 

intermediate to that of the S variants and 468 cells but is not transformed. Thus, the Al cells 

should be able to efficiently negatively regulate their entire EGF-R complement. Indeed, 

experimental results confirmed that this is the case. As was expected from the different EGF-R 

levels, the rate at which the Al cells could eliminate activated receptors was faster than the 468 

parental cell line but slower than either the SI or Sll variants. The effect of phosphorylation at 

S1046/1047 was not determined because the most significant parts of the negative regulatory 

apparatus appeared to be EGF-R down-regulation and the activity of tyrosine phosphatases. 

The primary reason for using both the SI and Sll variants is to control for clonal 

differences. If both SI and Sll behaved in a manner distinct from the parental 468 cell line but 

similar to each other, this would support the possibility that the observed differences were due to 

the different EGF-R levels and not to other differences. Because the karyotypes are not identical 

among the different cell lines, the EGF-R was amplified by retroviral mediated transduction in both 

the SI and Sll variants. A bi-cistronic amphotrophic mouse retrovirus was used in these studies. 
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The EGF-R is inserted 5' of a G418 resistance cassette and the two genes are separated by an 

internal ribosome entry site (IRES). With this vector, barring a very rare recombination event, 

resistance to G418 will not occur in the absence of EGF-R expression. 

Cells containing amplified EGF-R (designated XR for extra receptors) were cloned by 

limiting dilution and initially screened for induction levels by the binding of radioactive EGF or 

anti-EGF-R antibodies. Cell lines that had at least 3 fold higher EGF-R levels than either the SI or 

SI 1 cell lines further screened by mini-Scatchard analysis in order to better determine the actual 

EGF-R amplification level. 1125 labeled EGF was added to the amplified cell lines at a 

concentration of 0.98-250 ng/ml and allowed to come to equilibrium binding on ice. Cells were 

then washed with ice cold WHIPS buffer (pH 7.4) and the surface radioactivity was stripped off 

with a glycine/urea strip (pH 3.0). The number of counts stripped off the cells was determined by 

gamma counting and, after normalizing for cell number, used in Scatchard analysis (figure 1). The 

X intercept for each cell line corresponds to the number of receptors per cell and, because this is 

not a full Scatchard, are normalized to the X intercepts of SI or Sll. The clones S1XR13 

(transduced clone 13 from variant SI parental) and SI 1XR6 (transduced clone 6 from variant Sll 

parental) are both amplified approximately 8 fold over the SI and Sll variants respectively. This 

level of amplification results in a final receptor per cell count of 1.28 x 105 for S1XR13 5.28 x 105 

for SI 1XR6. These levels approximate the EGF-R level per cell of the Al cells. Since these were 

the highest levels of amplification seen in any of the clones obtained, they were used in the 

remaining experiments. 

If EGF-R amplification in the 468 parental cell line is responsible for its inability to 

efficiently downregulate activated receptors, then amplification of the EGF-R in the SI or SI 1 cell 

lines should also decrease their ability to negatively regulate the EGF-R. Figure 2 compares the rate 

of decline in PY signal in the SI cell line to that of S1XR13. Figure 3 compares the Sll cell line to 

that of SI 1XR6. All four cell lines were incubated with 100 ng/ml EGF for 0-360 minutes at 37 

C. At each timepoint, the cells were lysed and EGF-R were immunoprecipitated. Proteins were 

resolved  by   SDS   PAGE   and  probed  using   anti-PY  antibodies.   After  quantification   by 
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phosphoimage analysis, absolute PY levels were normalized to 100% at 10 minutes post EGF 

treatment. Figure 2 shows that the PY levels for S1XR13 decrease much more slowly than the PY 

levels for SI. Figure 3 shows that the PY levels for S11XR6 decline much more slowly than the 

PY levels corresponding to Sll. These results recapitulate the results seen when SI and Sll 

variants were compared to the 468 parental cell line, as expected. For this reason we conclude that 

amplification of the EGF-R, by itself, decreases the ability of the cell to negatively regulate receptor 

activity and may result in prolonged signaling. 

In order to determine if the results seen in figures 2 and 3 were due to an inability to 

downregulate the EGF-R, the blots were stripped and reprobed with another anti-EGFR antibody. 

EGF-R levels were quantitated by phosphoimaging and then normalized to 100% at the 10 minute 

timepoint. Figure 4 compares the EGF-R levels in SI to those of S1XR13. Figure 5 compares the 

EGF-R levels of SI 1 to those of SI 1XR6. As in the PY experiments, these results recapitulate the 

results seen when SI and Sll were compared to the 468 parental cell line. The ability to attenuate 

active EGF-R corresponds most closely with the ability to downregulate EGF-R. 

Since EGF-R amplification results in an increase in the number of activated EGF-R over 

time, we questioned whether or not these activated receptors were localized to signal. Several 

studies have shown that, at least in the case of the canonical Ras pathway, membrane localization is 

the only requirement for activation (19 and 20). It is thought that activation of EGF-R at the 

membrane allows it to signal through Ras and other pathways until it is internalized and removed 

from the signaling milieu (19 and 20). However, other researchers have suggested that 

endocytosed EGF-R also signal (17 and 18). 

Figure 6 shows that the EGF-R on the surface of the 468 cell line are not efficiently 

internalized while the surface receptors on the SI and Sll cells are efficiently internalized. Cells 

were treated with 100 ng/ml EGF for 0-120 minutes at 37 C. After incubation, the cells were 

placed on ice, washed with WHIPS and allowed to bind an 1125 labeled non-antagonistic anti- 

EGF-R antibody for several hours. The antibody which binds cell surface EGF-R was then 

stripped off using a glycine/urea stripping solution. The number of counts stripped off the cell 
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surface were determined by gamma counting and normalized to cell number. Maximum surface 

counts (100%) occurs when no EGF has been added to the cells. After the addition of EGF, 

progressively larger numbers of EGF-R are induced to enter the cell and thus can no longer bind 

exogenously added labeled antibody. The absolute number of surface counts/cell (data not shown) 

suggests that most of the total receptor numbers for SI, Sll and 468 cells reside on the cell 

surface. In any case, the surface counts per cell for the 468 cells is always approximately 25-30 

times that of SI or Sll. This shows that even if all receptors are not on the surface, 468 cells still 

have 30 fold more receptors on the cell surface than either variant. 

Figure 6 shows that for SI and Sll, 70% of the surface receptors are internalized within 

10 minutes following EGF treatment. 468 cells however, have only removed 33% of its total 

number of surface receptors after 10 minutes. After 120 minutes, 80% of both SI and SI 1 surface 

EGF-R have been internalized. In contrast, after 120 minutes only 50% of the 468 surface 

receptors have been internalized. If all of the cells receptors are on the cell surface before EGF is 

added, then after a 120 minute treatment with EGF, the 468 cells still have 1 xlO6 receptors on 

their surface. This is more receptors than either SI or Sll started with and all of them are now 

active. Thus, the active 468 EGF-R are not efficiently removed from the cell surface following 

activation and are localized for signaling through canonical pathways. 
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Conclusions 

1) The MDA-MB-468 variant cell lines S1 and S11 were transduced with EGF-R to a level of 1.28 

x 105 receptors per cell for S1XR13 and 5.28 x 105 receptors per cell for SI 1XR6. 

2) PY associated with activated EGF-R declines more slowly in the amplified variants (S1XR13 or 

S11XR6) than in either parent cell line (SI and Sll). This suggests that EGF-R amplification 

decreases the ability of the cell to negatively regulate its EGF-R. 

3) The speed at which the cell can downregulate its EGF-R correlates with the cells ability to 

negatively regulate activated receptors. The rate at which S1XR13 and SI 1XR6 downregulate their 

EGF-R is much slower than the rate of S1 or S11 EGF-R downregulation. 

4) Activated EGF-R are localized to signal through canonical signal transduction pathways. 

Activated EGF-R are removed from the cell surface rapidly in SI or SI 1 cells but very slowly in 

the MDA-MB-468 cell line. 
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Figure 1: Mini-Scatchard analysis of EGF-R transduced variant cell lines. EGF-R transduced 
SI and Sll cell lines were placed on ice and washed 3 times each with ice cold WHIPS pH 7.4 
(0.1% Polyvinylpyrolidone, 130 mM NaCl, 5 mM KC1, 0.5 mM MgC12-6H20, 1 mM CaC12-2H20, 
20 mM HEPES (Free acid)). 1 ml 1125 labeled EGF diluted serially: 250 ng/ml, 62.5 ng/ml, 15.6 
ng/ml, 3.9 ng/ml, and 0.98 ng/ml in DVHB (DV media supplemented with 0.1% BSA) was added to 
each plate and incubated for 7.5 hours on ice. After incubation, the plates were again washed 4 
times with ice cold WHIPS. 1 ml ice cold glycine/urea strip pH 3.0 (50 mM glycine, 100 mM 
NaCl, 1 mg/ml Polyvinylpyrolidone, 2 M Urea) was added to each plate incubated for 5 minutes 
and then collected into a gamma tube. Plates were then rinsed once with 1 ml of glycine/urea strip 
pH 3.0 and the wash was also collected into the gamma tube and read in a gamma counter. Cell 
number was determined using a Coulter counter. 
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Figure 2: Activated receptors are attenuated faster in SI than in its amplified variant 
S1XR13. S1XR13 and SI cells were treated with 100 ng/ml rHEGF for 0-360 minutes at 
37 C. EGF-Rs were extracted in RIPA (150 mM NaCl, 1% NP-40, 0.5% Deoxycholate, 
0.1% Sodium dodecyl sulfate, 50 mM Tris pH 7.2, 4 mM Iodoacetate, 1 mM 
Orthovanadate, 10 ug/ml Pepstatin, Chymostatin, Leupeptin and Aprotinin), 
immunoprecipitated with anti-EGF-R antibodies (225), and resolved by SDS PAGE. 
Phosphotyrosine was visualized using RC20 anti-phosphotyrosine antibody and 
chemiluminescent detection. 
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Figure 3: Activated receptors are attenuated faster in Sll than in its amplified 
variant S11XR6. S11XR6 and Sll cells were treated with 100 ng/ml rHEGF for 0-360 
minutes at 37 C. EGF-Rs were extracted in RIPA (150 mM NaCl, 1% NP-40, 0.5% 
Deoxycholate, 0.1% Sodium dodecyl sulfate, 50 mM Tris pH 7.2, 4 mM Iodoacetate, 1 
mM Orthovanadate, 10 ug/ml Pepstatin, Chymostatin, Leupeptin and Aprotinin), 
immunoprecipitated with anti-EGF-R antibodies (225), and resolved by SDS PAGE. 
Phosphotyrosine was visualized using RC20 anti-phosphotyrosine antibody and 
chemiluminescent detection. 
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Figure 4: The EGF-R transduced cell line S1XR13 downregulates the receptor much more 
slowly than the parental cell line SI. The anti-Phosphotyrosine blot shown in figure 2 was 
stripped (100 mM 2-Mercaptoethanol, 2% SDS, 62.5 mM Tris HC1 pH 6.7) for 30 minutes at 55 C, 
and reprobed with a different anti-EGF-R antibody distinct from the immunoprecipitation antibody 
(N13). The receptor antibody was visualized with an anti-Rabbit HRP conjugated antibody detected 
using chemiluminesence. 
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Figure 5: The EGF-R transduced cell line S11XR6 downregulates the receptor much more 
slowly than the parental cell line Sll. The anti-Phosphotyrosine blot shown in figure 3 was 
stripped (100 mM 2-Mercaptoethanol, 2% SDS, 62.5 mM Tris HC1 pH 6.7) for 30 minutes at 55 C, 
and reprobed with a different anti-EGF-R antibody distinct from the immunoprecipitation antibody 
(N13). The receptor antibody was visualized with an anti-Rabbit HRP conjugated antibody detected 
using chemiluminesence. 
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Figure 6: Activated EGF-R is rapidly removed from the surface of SI and Sll variants 
but not from the surface of the parental 468 cell line. 100 ng/ml EGF was added to SI, 
Sll or 468 cell media for 0-120 minutes at 37C. After incubation, the cells were placed on 
ice and washed 3X with ice cold WHIPS pH 7.4 (0.1% Polyvinylpyrolidone, 130 mM NaCl, 
5 mM KC1, 0.5 mM MgC12-6H20, 1 mM CaC12-2H20, 20 mM HEPES (Free acid)). 1 ml of 
3 ug/ml 1125 labeled 13A9 was added to each plate. Plates were then incubated for 2 hours 
at 4 C. After incubation, plates were again washed 3 times with ice cold WHIPS. 1 ml ice 
cold glycine/urea strip pH 3.0 (50 mM glycine, 100 mM NaCl, 1 mg/ml 
Polyvinylpyrolidone, 2 M Urea) was added to each plate and allowed to incubate for 5 
minutes and then collected into a gamma tube. Plates were then rinsed once more with 
another 1 ml of glycine/urea strip and this wash was also collected into the gamma tube. All 
samples were counted in a gamma counter. Cell number was determine by counting in a 
Coulter counter. 
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